Testing of Mercury Control with Calcium-Based Sorbents and Oxidizing Agents

Southern Research Institute, Birmingham, Alabama

Subcontractor- ARCADIS Geraghty & Miller

Two test series performed:

1. ARCADIS Geraghty & Miller sorbents

2. Hydrated lime

Bituminous coal with pulse jet baghouse

Calcium Sorbents

- Developed and prepared by Arcadis Geraghty Miller with EPA support.
- Hydrated Lime and Silica-lime (higher surface area) with an added oxidant.
- Bench-scale results showed adsorption capacity similar to activated carbon.
- Also capable of removing SO₂.
- Less expensive than activated carbon.

Combustion Research Facility pilot scale furnace

6 MBtu/hr pulverized coal

- (0.6 MW electric)
- pulse jet baghouse

Available but not used:

- fluidized bed for sorbent
- ESP for particulate control

PSA mercury monitor results of injection of hydrated lime+oxidant Downstream of baghouse

Note decrease in total Hg but increase in elemental Hg (oxidant did not work)

Results of AGM Sorbents

	INLET	OUTLET No Sorbent			OUTLET Lime+oxidant			OUTLET Silica-lime +oxidant		
	PSA	PSA	ОН	%Re mov ed	PSA	ОН	%Re mov ed	PSA	ОН	%Re mov ed
Total Mercury ug/m ³	10-12	8-10	9.5	14	6-8	7.3	34	4-7	6.1	45
Elemental Mercury ug/m ³	4	1	1.2	70	4	4.9	-22	2-3	3.5	12

INLET=duct prior to sorbent injection, OUTLET=after baghouse PSA=continuous emissions monitor, OH=Ontario Hydro method Note that oxidant addition actually decreased amount of oxidized Hg relative to the oxidation that was occurring on the ash in the baghouse Up to 45% Hg capture, up to 70% SO₂ capture

Results from hydrated lime injection

	INLET	OUTLET No Lime	OUTLET Lime	
Total Mercury ug/m ³	14.5-16.5	8.5-10.5	2-4	
Elemental Mercury ug/m ³	4	0.5	0	

80-90% Hg removal

~50% SO₂ removal at higher injection temperature

Benchscale Results

- Designed to explain pilot scale results.
- Variables: Temperature 80 C or 140 C; sorbent, ash, NO, and CO present or absent.
- Found high temperature beneficial (contrary to expected Hg adsorption behavior, due to enhanced Hg oxidation, which adsorbs better).
- NO decreased sorbent performance by 71% at 140 C.
- Conclusion: Poor pilot scale results explained by presence of NO and lower temperature.

Future Direction

- -Lime-based sorbents
- -Alternative oxidants
 sodium tetra-sulfide
 chlorine compounds
 high iron oxide coal ash
- -Lower rank coals (PRB)